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Abstract

The lack of protection for semiconductor bridges (SCBs) against human
electrostatic discharge (ESD) presents an obstacle to widespread use of this
device.  The goal of this research is to protect SCB initiators against pin-to-pin
ESD without affecting their performance.  Two techniques were investigated.  In
the first, a parallel capacitor is used to attenuate high frequencies.  The second
uses a parallel zener diode to limit the voltage amplitude.

Both the 1 µF capacitor and the 14 V zener diode protected the SCBs from ESD.
The capacitor provided the best protection.  The protection circuits had no effect
on the SCB’s threshold voltage.  The function time for the CP-loaded SCBs with
capacitors was about 11 µs when fired by a firing set charged to 40 V.  The SCBs
failed to function when protected by the 6 V and 8 V zeners.  The 51 V zener did
not provide adequate protection against ESD.

The parallel capacitor succeeded in protecting SCB initiators against pin-to-pin
ESD without affecting their performance.  Additional experiments should be done
on SCBs and actual detonators to further quantify the effectiveness of this
technique.  Methods for retrofitting existing SCB initiators and integrating
capacitors into future devices should also be explored.
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Nomenclature

AC alternating current
BNCP tetraamine-cis-bis (5-nitro-2H-tetrazolato-N2) cobalt III perchlorate
CDU capacitive discharge unit
CP cyanotetrazolatopentaamine cobalt III perchlorate
EED electro-explosive device
ESD electrostatic discharge
HE high explosive
SCB semiconductor bridge
Vz zener breakdown voltage
? frequency (radians/second)
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1. Introduction

Several techniques have been developed to protect electro-explosive devices
(EEDs) against radio-frequency interference and electrostatic discharge (ESD)
[1-6].  However, the lack of protection for semiconductor bridges (SCBs) against
human ESD, as modeled by Fisher [7], still presents an obstacle to widespread
use of this device.  The goal of this research is to protect SCB initiators against
pin-to-pin ESD without affecting their performance.  Two techniques were
investigated.  In the first, a parallel capacitor is used to attenuate high
frequencies.  The second uses a parallel zener diode to limit the voltage
amplitude.  This report presents a theoretical analysis, simulation and
experimental results, and concludes with a recommendation for future work.

2. Theoretical Analysis

Consider the circuit shown in Fig. 1.  This represents an SCB, with resistance R,
in parallel with a capacitor, C, being driven by a current source, i(t).  The
frequency response of this circuit can be determined using steady-state
alternating current (AC) analysis, as shown in Fig. 2.  At low frequencies, that is

RC
1<<ω , the capacitor impedance is much greater than R, so the source current

flows through the SCB.  Conversely, at high frequencies, that is RC
1>>ω , the

capacitor impedance is much smaller than R, so the source current flows through
C.  Thus, R and C form a low-pass filter.  The design objective, then, is to select
C so that it will shunt away the higher frequency ESD current and pass the lower
frequency firing set current.  Consequently, a 1 µF capacitor was chosen.  This
capacitor, in parallel with a 1 O SCB, should produce a delay on the order of 1
µs.

Now consider the circuit shown in Fig. 3.  For i(t) = 0, the zener diode, D, will
conduct when v(t) exceeds the zener breakdown voltage, Vz.  The design
objective in this case is to select Vz high enough to keep D off during the lower,
longer firing set current, yet low enough to turn D on during the higher, shorter
ESD current.  Consequently, a 14 V zener diode was chosen.  Protection can be
provided in both directions by replacing D with a pair of back-to-back zener
diodes connected in series.

RCi(t)

     

1/jwCI(w) R

   Figure 1.  SCB with capacitor.               Figure 2.  Circuit in frequency domain.
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3. Simulation Results

PSpice was used to simulate ESD and function testing of a protected and
unprotected 1 O SCB, as shown in Figs. 4 and 5, respectively.  The Fisher ESD
model is used in this circuit along with a 40 V, 50 µF capacitive discharge unit
(CDU).  The schematic also includes U22, an SCB model developed by Marx
[8,9].  The SCB current waveforms in Fig. 6 indicate that the zener diode, D25,
does very little to protect the SCB.  However, the capacitor, C5, shunts virtually
all of the current away from the SCB.  The SCB current waveforms in Fig. 7
indicate that the zener diode has very little effect on the functioning of the SCB.
The capacitor, however, appears to delay functioning of the SCB by about 1 µs,
as expected.

D R v(t)
_

+
i(t)

Figure 3.  SCB with zener diode.
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4. Experimental Results

Function and ESD experiments were performed with and without a high
explosive (HE) as illustrated in Fig. 8.  Table 1 lists the equipment used.  The
SCBs were connected to the CDU by a 65 ft. C cable and to the ESD tester by
custom-made test fixtures.
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Figure 7.  Simulated SCB currents during functioning.
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Table 1.  Equipment list.

Item Part # Manufacturer
SCBs SCB32B1 SCB Technologies
SCBs SCB50B1 SCB Technologies
SCBs SCB32B50 SCB Technologies
SCB detonator X2-300420-1 Pacific Scientific
6 V zener diodes S6Z/T3-SG SCB Technologies
8 V zener diodes S8Z/T3-SG SCB Technologies
14 V zener diodes S14Z/T3-SG SCB Technologies
51 V zener diodes 1N5262B Vishay
1 µF, 50 V ceramic capacitors MALCK06BX105K Mallory
Fisher ESD tester PT3689 SNL
CDU 1A0662 SNL
Firing set Prototype SNL
Power supply (no HE) PS505 BelMERIT
Power supply (HE) 3006B Protek
Pulse generator (no HE) 6200 Picosecond Pulse Labs
Pulse generator (HE) 214B Hewlett Packard
Oscilloscope TDS 784A Tektronix
Ohmmeter 4314A Valhalla

4.1 ESD Tests

The objective of these tests was to determine whether the capacitor or zener
diode would protect SCBs against ESD.  For no HE, three different SCBs were
tested with and without a capacitor.  Table 2 indicates that the protected SCBs
exhibit negligible resistance change compared to the unprotected SCBs.

Tests were then performed using SCB32B1s loaded with cyanotetrazolatopenta-
amine cobalt III perchlorate (CP) or tetraamine-cis-bis (5-nitro-2H-tetrazolato-N2)
cobalt III perchlorate (BNCP) and protected by capacitors or zener diodes with 6
V = Vz = 51 V.  None of the protected SCBs were initiated by the ESD pulse, as
shown in Table 3.  The capacitor appears to provide the greatest protection,
producing the smallest resistance change.  In general, the protection provided by
the diodes decreases with increasing Vz, as expected.

Finally, a third series of ESD tests was performed on CP-loaded SCB32B1s
protected by a capacitor or 51 V zener.  Table 4 indicates that none of the SCBs
fired when protected by the capacitor.  However, with the zener, 33% of the
SCBs fired after the first ESD exposure and they all fired after the second
exposure.  Consequently, the 51 V zeners were eliminated from further
consideration.
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Table 2.  ESD test with and without capacitor and no HE.

SCB Type Capacitor RI(O) RF(O) ?R(O)
SCB32B1 Yes 1.064 1.068 0.004
SCB32B1 Yes 1.064 1.072 0.008
SCB50B1 Yes 1.024 1.025 0.001
SCB50B1 Yes 0.998 0.996 -0.002
SCB32B50 Yes 61.9 61.9 0
SCB32B50 Yes 62.2 62.2 0
SCB32B1 No 1.090 0.910 -0.18
SCB50B1 No 1.009 6.470 5.461
SCB50B1 No 1.027 6.221 5.194
SCB32B50 No 63.9 64.7 0.8

Table 3.  SCB32B1 ESD test with protection and HE.

Explosive Protection RI(O) RF(O) ?R(O)
BNCP Capacitor 1.100 1.106 0.006
BNCP 6 V Zener 1.070 1.085 0.015
BNCP 8 V Zener 1.106 1.118 0.012
BNCP 14 V Zener 1.104 1.120 0.016
CP Capacitor 1.099 1.101 0.002
CP 6 V Zener 1.101 1.105 0.004
CP 8 V Zener 1.063 1.067 0.004
CP 14 V Zener 1.095 1.123 0.028
CP 51 V Zener 1.097 2.562 1.465
CP 51 V Zener 1.077 2.830 1.753
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Table 4.  CP-loaded SCB32B1 ESD test with protection.

Shot # Protection Fired Comments
1 51 V Zener No
2 51 V Zener Yes Same zener as shot 1
3 51 V Zener No
4 51 V Zener Yes Same zener as shot 3
5 51 V Zener Yes
6 51 V Zener No
7 51 V Zener Yes Same zener as shot 6
8 51 V Zener Yes
9 51 V Zener No

10 Capacitor No
11 Capacitor No
12 Capacitor No
13 Capacitor No
14 Capacitor No
15 Capacitor No
16 Capacitor No
17 Capacitor No
18 Capacitor No

4.2 Threshold Voltage Tests

The objective of these tests was to determine what effect the protection circuits
have on the SCB32B1 threshold voltage.  For no HE, the threshold voltage is
defined as the CDU voltage required to burst the SCB.  The Neyer statistical
program was employed to determine threshold voltages using experimental data.
Table 5 shows that the mean threshold voltage remains unchanged at 18.5 V for
the capacitor and 14 V zener.  Figure 9 shows the output currents with the CDU
charged to 24 V.  The 6 V and 8 V zeners were eliminated from further
consideration because they prevented the SCB from firing, even with the CDU
charged to 40 V.

For CP and BNCP, the SCBs functioned at 15 V but not at 10 V with and without
the capacitor or 14 V zener.  Therefore, the protection circuits had no noticeable
effect on the threshold voltage.

A third threshold voltage test was performed using a 30 µF firing set and CP-
loaded detonators with parallel capacitors.  These protected detonators were
exposed to ESD prior to testing.  The data in Table 6 imply a mean threshold
voltage of 17.7 V with a standard deviation of 2.6 V.

Finally, a fourth threshold voltage test was performed using the 30 µF firing set
and CP-loaded SCB32B1s with no protection and no prior exposure to ESD.  The



15

data, shown in Table 7, indicate a mean threshold voltage of 15.6 V with a
standard deviation of 2.3 V.

Table 5.  Threshold voltage test with and without protection and no HE.

Vin (V) Fired
10 No
15 No
15 No
17 No
18 No
19 Yes
20 Yes
22 Yes
24 Yes
24 Yes
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Figure 9.  CDU output currents with no HE.
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Table 6.  CP-loaded detonator threshold voltage test with capacitor.

Vin (V) Fired
15.500 No
15.750 No
16.000 No
16.250 No
16.500 Yes
16.750 No
17.000 Yes
17.500 No
17.500 Yes
18.000 Yes
20.000 Yes
20.000 No
20.000 Yes

Table 7.  CP-loaded SCB32B1 threshold voltage test without protection.

Vin (V) Fired
13.750 No
14.851 No
15.391 No
15.400 No
15.669 No
15.700 Yes
15.700 Yes
15.750 Yes
15.800 Yes
15.938 Yes
15.940 Yes
16.689 Yes
17.000 Yes
17.000 No
17.441 No
18.130 Yes
22.500 Yes

4.3 Function Tests

The objective of these tests was to determine the function time of the SCB-
capacitor combination.  A function test was performed using the 30 µF firing set
and CP-loaded detonators with parallel capacitors.  These protected devices
were previously exposed to ESD.  The firing set was charged to 40 V.  The data
in Table 8 imply a mean function time of 10.5 µs with a standard deviation of 0.7
µs.
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A second function test was performed using the 30 µF firing set and CP-loaded
SCB32B1s with no protection both with and without prior exposure to ESD.  The
firing set was again charged to 40 V.  The data, shown in Table 9, indicate a
mean function time of 11.3 µs with a standard deviation of 0.3 µs.

5. Conclusion

Both the 1 µF capacitor and the 14 V zener diode protected the SCBs from ESD.
The capacitor provided the best protection.  The protection circuits had no effect
on the SCB’s threshold voltage.  The function time for the CP-loaded SCBs with
capacitors was about 11 µs when fired by the 30 µF firing set charged to 40 V.
The SCBs failed to function when protected by the 6 V and 8 V zeners.  The 51 V
zener did not provide adequate protection against ESD.

The parallel capacitor succeeded in protecting SCB initiators against pin-to-pin
ESD without affecting their performance.  Additional experiments should be done
on SCBs and actual detonators to further quantify the effectiveness of this
technique.  Methods for retrofitting existing SCB initiators and integrating
capacitors into future devices should also be explored.

Table 8.  Function times for CP-loaded detonator with capacitor.

Function time (µs) ESD tested
11.595 Yes
9.841 Yes
9.881 Yes

10.208 Yes
10.785 Yes
10.457 Yes

Table 9.  Function times for CP-loaded SCB32B1 without protection.

Function time (µs) ESD tested
10.882 Yes
11.559 Yes
10.704 Yes
11.566 No
11.196 No
11.501 No
11.397 No
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